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Abstract
We present an approach to studying directed polymers in interaction with a
defect line and subject to a force which pulls them away from the line. We
consider in particular the case of inhomogeneous interactions. We first give
a formula relating the free energy of these models to the free energy of the
corresponding ones in which the force is switched off. We then show how to
detect the presence of a re-entrant transition without fully solving the model.
We discuss some models in detail and show that inhomogeneous interactions,
e.g. disordered interactions, may induce the re-entrance phenomenon.

PACS numbers: 02.50.−r, 05.70.Fh, 64.60.−i, 82.35.−x

(Some figures in this article are in colour only in the electronic version)

1. Introduction

1.1. Overview

Pulling polymers out of potential wells by applying a force f in the direction orthogonal to
the pinning region has been considered at several instances (see e.g. [3, 16, 19, 20, 23] and
references therein). The techniques employed essentially lead to exact (and mathematically
rigorous) results for models with homogeneous interactions (see, in particular, [20, 23]), while
in the inhomogeneous case, notably in the disordered case, the results are often based on
arguments out of mathematical control (e.g., replica and renormalization group computations)
or on annealed approximations that, in general, are not close to the behaviour of the quenched
system. One of the interesting phenomena that has been pointed out, at least in some model
systems, is the presence of a re-entrant transition (see in particular [20], but this issue is taken
up in most of the references we have given). By this we mean that, for a fixed force f , the
polymer is pulled out of the defect line at low temperature and at high temperature, but for
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intermediate temperatures it is localized at the defect line, very much like if the force was not
present. The references above are limited to theoretical work, but all of them are motivated
by real experiments: the literature on real experiments is very rich, and here we single out [6]
that deal with DNA unzipping and contains further references.

Our purpose is to point out that one can directly relate the free energy in the presence of
a force to the free energy of the polymer with a free endpoint for a very large class of directed
models and that the presence of a re-entrant transition is easily related to suitable asymptotic
behaviour of the expressions appearing in this formula. As a consequence, we will give a
simple necessary and sufficient condition for the re-entrance to take place for very general
models (including disordered ones).

In order to be concrete we choose to deal with a precise and rather limited class of
models, but the reader will realize that the method we present is very general. Extensions are
considered explicitly in section 5. Moreover, the phenomenology of the restricted class of
models we consider is already very rich.

We point out that we focus exclusively on cases in which the polymer interacts only at
the defect line and other relevant cases, like the case in which bulk disorder is present (e.g.
[10, 18]), are not considered here. On the other hand, it is straightforward to generalize the
content of this paper to directed models of copolymers near a selective interface [11, 15].

1.2. A model

Let us consider a (p, q) walk, that is a random walk S := {Sn}n=0,1,... with S0 = 0 and
independent identically distributed (IID) increments {Sn+1 − Sn}n=0,1,... taking values in
{−1, 0, +1}, with P(Sn+1 − Sn = 1) = P(Sn+1 − Sn = −1) = p/2 and P(Sn+1 − Sn = 0) = q.
We assume p + q = 1 and p > 0. Particularly relevant for what follows is the distribution
of the first return time to zero, τ := inf{n : Sn = 0}: therefore we set K(n) = P(τ = n),
along with K(n) := ∑

j>n K(j). We point out that the Laplace transform of K(·), that is∑
n exp(−bn)K(n), b � 0, can be written explicitly and K(n) itself can be expressed in terms

of P(Sk = 0), k = 1, . . . , n (and therefore explicitly computed for every n) by using the
standard renewal theory formula

P(Sn = 0) = δn,0 +
n∑

j=1

K(j)P(Sn−j = 0).

In particular one obtains that n3/2K(n) converges to cp := √
p/(2π) ([12, appendix A]), if

p < 1 (an analogous result holds for the p = 1 case, see below). Also note that K(0) = 1,
since S is recurrent.

Given a sequence ω := {ωn}n of real numbers (the charges), we define the new measure
Pβ,f

N,ω on the space of random walk paths by introducing a Boltzmann weight (β � 0, f � 0):

dPβ,f

N,ω

dP
(S) = 1

Z
β,f

N,ω

exp

(
β

N∑
n=1

ωn1Sn=0 + βf SN

)
, (1.1)

where 1Sn=0 equals 1 if Sn = 0 and zero otherwise. For the reader unfamiliar with probabilistic
notations, (1.1) means more explicitly the following. Let s := {sn}n=0,1,...,N be a possible
length N polymer configuration, so that in the absence of interaction with the defect line

P(S1 = s1, . . . , SN = sN) = qν(s) (p/2)N−ν(s) , (1.2)

if ν(s) := #{1 � n � N : Sn = Sn−1}. Then, (1.1) says that in the presence of interaction

Pβ,f

N,ω(S1 = s1, . . . , SN = sN) = qν(s)(p/2)N−ν(s)

Z
β,f

N,ω

exp

(
β

N∑
n=1

ωn1sn=0 + βf sN

)
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where, of course,

Z
β,f

N,ω =
∑

s

qν(s)(p/2)N−ν(s) exp

(
β

N∑
n=1

ωn1sn=0 + βf sN

)
. (1.3)

The Boltzmann average (for given charges ω and system size N) of an observable A will be
denoted by Eβ,f

,ω (A).
We will consider two (wide) classes of charges, given below.

(1) ω is a periodic (deterministic) sequence, i.e. a sequence of numbers such that ωn+T = ωn

for some positive integer T and every n. We denote by T(ω) the minimal T with such a
property, that is the period. If T(ω) = 1, then ω is homogeneous.

(2) ω is the realization of a sequence of random variables. For simplicity we consider only
the case of IID variables. Therefore the law of ω is determined by the law of ω1, but
our analysis would go through in the much wider domain of stationary sequences of
variables. We refer to this case as disordered or quenched and we denote by P the
disorder distribution and by E the corresponding average.

The existence of the limit,

lim
N→∞

1

N
log Z

β,0
N,ω =: F(β), (1.4)

is very well known. This follows from elementary super-additivity arguments in the periodic
(and, of course, in the homogeneous) set-up (see e.g. [12, chapter 1]); in general, the limit
depends on ω. In the disordered case, instead, one has to be a bit more careful; a precise
statement is, for example, that if E|ω1| < ∞ then the limit in (1.4) exists P-almost surely (i.e.
except for a set of disorder realization of probability zero). Moreover the right-hand side is
in principle a random variable, but it turns out to be degenerate, i.e. it does not depend on ω.
This property, usually referred to as self-averaging, is well understood in this context (see [12,
chapter 4] for proofs and overview of the literature). We remark that

Z
β,0
N,ω � P [Sn �= 0, for n = 1, 2, . . . , N] = K(N) � cN−1/2, (1.5)

for some c > 0 (which follows from the definition of K(N) and from the fact that, as
we mentioned above, K(N) behaves like N−3/2 for N → ∞), so that F(β) � 0 for every
β. Much literature has been spent on this model, starting with the seminal works [7, 9],
and about the fact that F(β) > 0 corresponds to a localized regime, that is to the case in
which the typical trajectories are tightly bound to the defect line (see [14] for rigorous results
on the path properties in the localized phase and [12, chapter 7] for a full review of the
literature). On the other hand, F(β) = 0 corresponds to a delocalized regime. One should
however distinguish between the critical point β = βc = sup{β : F(β) = 0} and the truly
delocalized region where β < βc. Both critical and delocalized regimes are well understood
in the homogeneous/periodic case. The disordered case is instead mathematically much more
elusive, but results have been obtained recently also in this case (see [12] and references
therein, in particular [13, 25] for the disordered case), namely explicit estimates on how many
visits (a non-extensive number!) are paid by the polymer to the defect line.

A relevant difference between the two classes of charges we consider is that in the first
case F(β) is explicitly known. To be more precise in the periodic case, F(β) can be expressed
in terms of the leading eigenvalue of a suitable T(ω) × T(ω) Perron–Frobenius matrix [4, 5]
(see also appendix A.2); computing such an eigenvalue becomes harder and harder for larger
periods, but the problem trivializes in the homogeneous case. In the special case of T = 2, the
expressions for the free energy and other observable quantities have been derived, for example,
in [21, 22]. In the disordered case, instead, only estimates on F(β) are known [1, 12].
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We also point out that for every y ∈ R, the limit

lim
N→∞

1

N
log E[exp(ySN); Sn �= 0 for n = 1, 2, . . . , N ] := G(y), (1.6)

exists. (Here we use the standard convention that if A is a set of trajectories and g(S)

an observable, then E(g(S);A) := E(g(S)1A(S)), where 1A(S) equals 1 if S ∈ A and 0
otherwise.) Actually, the explicit value of G(·) is easily computed by applying the reflection
principle [12, appendix A] and one obtains G(y) = log(p cosh(y) + q).

For the model with the force we have:

Proposition 1.1. For every β and f the limit, that we denote by F(β, f ), of the sequence{
(1/N) log Z

β,f

N,ω

}
N

exists (P(dω)-almost surely (a.s.), in the disordered case). Moreover, we
have the formula

F(β, f ) = max(F(β), G(βf )). (1.7)

A line of non-analytic points of F(· , ·) is evident: for every β we set fc(β) :=
β−1G−1(F(β)) ∈ [0,∞). Therefore, for every β

F(β, f ) =
{

F(β) if f � fc(β),

G(βf ) if f � fc(β).
(1.8)

It is quite easy to get convinced that this non-analyticity corresponds to a localization–
delocalization transition; the most interesting case is when F(β) > 0, otherwise the system is
already delocalized at f = 0. By convexity, ∂f F(β, f ) > 0 if f > fc(β) (and if ∂f F(β, f )

exists). This directly implies that limN→∞ Eβ,f

N,ωSN/N = ∂f F(β, f ) > 0 For f < fc(β)

instead limN→∞ Eβ,f

N,ωSN/N = ∂f F(β, f ) = 0. These are distinctive marks respectively of
localization and delocalization (for sharper results we refer to [24]).

It is also worthwhile to observe that formula (1.7) yields that ∂f F(β, f ) is discontinuous
at f = fc(β) for β > 0. So the transition is of first order (as argued in much of the
previous literature). The underlying mechanism has also been exploited in [2]. It is important
to emphasize that this transition has in general nothing to do with the usual delocalization
transition which the system, in the absence of pulling force, undergoes when the temperature
or the average of the charges is varied. In particular, the latter transition is known rigorously
to be always smooth (i.e. of order higher than the first) when disorder is present.

We now turn to the issue of the existence of a re-entrant transition. As mentioned above,
this refers to the fact that for some fixed f the system undergoes (at least) two phase transitions
as the temperature T = 1/β is increased from zero to infinity. More precisely, two cases are
observed: one can either observe a pattern of the type localized–delocalized–localized by
increasing T, or the opposite one: delocalized–localized–delocalized.

Of course, re-entrance is equivalent to the non-monotonicity of fc as a function of β,
and a sufficient condition for it is that the difference fc(∞) − fc(0) has the opposite sign
as ∂βfc(β)|β=0. As we show in the following, these quantities are related to the asymptotic
behaviour of F(β) for β → 0 and β → ∞, which in many cases (including quenched
disordered situations) can be easily computed without fully solving the model.

We wish to emphasize that while, in principle, the occurrence of

∂βfc(β)|β=0[fc(∞) − fc(0)] < 0, (1.9)

is just a sufficient condition for re-entrance, it turns out numerically in the cases we have
checked (cf figures 1 and 2) that when (1.9) is not verified the critical force is monotone in β

and re-entrance is absent.
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Figure 1. Critical force fc as a function of 1/β, for the homogeneous model. (a) Without a hard
wall. The curves correspond to q = 1/2, 1/3, 1/5, 1/50 and 0, from top to bottom. The slope
at the origin is positive if log q > log(p/2), in agreement with (2.2) and therefore re-entrance is
present if and only if 0 < q < 1/3. The critical force fc(β) is computed by using (1.7), where
F(β) is the solution of

∑
n K(n) exp(−F(β)n) = exp(−β) [12, proposition 1.1]. Note that the

transition p → 1 to the simple random walk case is singular, that is fc(∞) = 1 for every p < 1,
but fc(∞) = 1/2 for p = 1 (compare (2.2) and (2.3)). (b) With a hard wall (the values of q are
the same as in (a)). Re-entrance is present if and only if q > 1/3. In this case, F(β) is given
by the solution of

∑
n K+(n) exp(−F(β)n) = exp(−β), where K+(n) = K(n)/2 if n � 2 and

K+(1) = K(1).

2. The homogeneous case

This section has two aims:

(1) generalizing the results of the previous literature. For example in [23] only the cases
q = 1/3 and q = 0 are considered and no re-entrance is observed, while for different
values of q re-entrance does appear;

(2) providing the general scheme that we also follow in the following sections, even if the
models of this section are exactly solvable (but we will not solve them).

First of all note that if ωn ≡ −c < 0, the polymer is delocalized already in the absence
of the force and fc(β) = 0 for every β � 0, an uninteresting situation. Therefore, in the
homogeneous case, we will assume that ωn ≡ c > 0 and, without loss of generality, c = 1.

The behaviours of the critical force for β↘0 and for β → ∞ are easily obtained:

Proposition 2.1. For the homogeneous model, i.e. (1.1) and ωn ≡ 1, with p < 1 one has

lim
β↘0

fc(β) = 1

p
, (2.1)
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Figure 2. Critical force fc as a function of 1/β, in the case of periodic charge distribution and
q = 1/3. In the three cases T(ω) = 50 and the charges have been chosen at random, i.e. each
sequence {ωn}n=1,...,50, ωn ∈ {−1, 1}, is equiprobable (the explicit sequences {(ωn +1)/2}n=1,...,50
are given next to the corresponding curves): for the top curve |{n : ωn = +1}| = 30, while for
the bottom one |{n : ωn = +1}| = 22. The intermediate curve corresponds instead to the case in
which there are as many positive charges as negative, and in fact the curve approaches 0 for large
temperatures. As explained in the text, these graphs give also strong hints on the behaviour of
disordered systems.

and

fc(β)
β→∞= 1 +

1

β
(log q − log(p/2)) + o

(
1

β

)
. (2.2)

In particular, one has re-entrance if and only if 2/3 < p < 1. As for p = 1, one has
fc(β) → 1 for β → 0 and

fc(β)
β→∞= 1

2
+

1

2β
log 2 + o

(
1

β

)
. (2.3)

Re-entrant behaviour is not observed in this case.

(Recall here that, in standard notation, if x → 0, o(x) denotes any quantity such that
o(x)/x → 0 for x → 0.) See also figure 1(a), were we plot fc(β) as a function of 1/β,
for different choices of q.

Proof of proposition 2.1. Consider first the case p < 1. Since K(n) ∼ cpn−3/2, cp =√
p/(2π), for β↘0 one has [12, Theorem 2.1]

F(β) ∼ β2

(2cp�(1/2))2
. (2.4)

(To avoid any confusion, let us recall here that the standard notation f (x) ∼ g(x) for x → 0
(or for x → ∞) simply means that f (x)/g(x) tends to 1 for x → 0 (or for x → ∞,
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respectively).) This, together with a Taylor expansion of G(y) around y = 0, immediately
gives (2.1).

The large β behaviour can also be easily captured without explicit computations: for
p < 1, F(β) = β + log K(1) + o(1) as β → ∞, and K(1) = q = 1 − p, where o(1) simply
denotes a quantity which tends to zero for β → ∞. This corresponds simply to the fact
that for β large, the dominant trajectories are those such that |{n : Sn �= 0}| 	 N . Since
G(y) = y + log(p/2) + o(1) as y → ∞, one finds (2.2).

For p = 1, (2.4) is modified in this case into F(β) ∼ β2/2 (this follows from
[12, Theorem 2.1] plus the fact that, for the simple random walk, K(2n) ∼ n−3/2√1/(4π)

[8, chapter III]) and K(2n + 1) = 0). As a consequence, fc(β) → 1 for β → 0. As for the
β → ∞ behaviour, note that F(β) = β/2 + (log K(2))/2 + o(1) and K(2) = 1/2, so that (2.3)
follows.

The statements about re-entrance easily follow from (2.1)–(2.3). �

2.1. The model with hard-wall repulsion

We conclude this section by showing that the phase diagram and the re-entrance phenomenon
are strongly model dependent. To this purpose, we modify the model by inserting a hard-wall
condition (like in [23]), which corresponds to inserting on the right-hand side of (1.1) the
indicator function of the event {S : Sn � 0 for n = 1, . . . , N}. Of course, the partition
function and the free energy will be in general modified (in particular, the sum in (1.3) will
be restricted to configurations satisfying si � 0, i = 1, . . . , N ). We consider for conciseness
only the case p < 1.

Proposition 2.2. For the homogeneous model with hard-wall repulsion and p < 1, there
exists β0 > 0 such that fc(β) = 0 for β < β0. Moreover, the large β behaviour of fc(β) is
still given by (2.2). Re-entrance takes place for p < 2/3.

Proof of proposition 2.2. In the presence of the hard wall, for β sufficiently small but finite,
one has F(β) = 0 (cf for instance [12, Section 1.2]) so that fc(β) = 0. This is rather intuitive:
even in the absence of the pulling force, the entropic repulsion effect provided by the wall is
enough to delocalize the polymer. As for the β → ∞ limit, since the dominant trajectory
Sn ≡ 0 is allowed by the hard-wall constraint, one again finds F(β) = β + log K(1)+o(1), and
equation (2.2). Occurrence of re-entrance for p < 2/3 immediately follows from the small-
and large-β behaviour of the critical force. �

Observe that for the model with hard-wall repulsion, the situation is somewhat reversed
with respect to the previous case: one has re-entrance for p < 2/3 and no re-entrance for
2/3 < p < 1 (see also figure 1(b)).

3. The periodic case

We start by recalling that the solution of the periodic case can be reduced to a finite dimensional,
in fact T(ω)–dimensional, problem [4, 5, 12]; by solving numerically this finite dimensional
problem we have drawn the curves in figure 2. However, from the T(ω)–dimensional problem
one can extract many analytic features too. Here we concentrate on small and large β

behaviour, since they suffice to highlight part of the variety of observed phenomena. We
collect and discuss here the results; see appendix A.2 for the proofs. We will assume for
simplicity that charges ωn take only the values ±1. Just a bit of notation for the following
result (for the sake of conciseness, we restrict our attention to the case without hard-wall
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repulsion). Set 	0 := min{n : ωn = +1} (we are implicitly assuming that ωn is not equal to
−1 for all n) and 	i+1 := inf{n > 	i : ωn = +1}. Set also ι(ω) := min{i : 	i > T(ω)}.

Proposition 3.1. In the periodic case, we have the small temperature behaviour

fc(β)
β→∞= 1

T(ω)

T(ω)∑
n=1

(2ωn − 1) +
1

β

(
1

T(ω)

ι(ω)∑
i=1

log K(	i − 	i−1) − log(p/2)

)
+ o(1/β),

(3.1)

and at high temperatures (β↘0)

fc(β) =




1
pT(ω)

∑T(ω)
n=1 ωn + O(β) if

∑T(ω)
n=1 ωn > 0,

1
2p

β + o(β) if
∑T(ω)

n=1 ωn = 0,

0 if
∑T(ω)

n=1 ωn < 0 and β � β0,

(3.2)

where β0 := sup{β : F(β) = 0}, and β0 ∈ (0,∞) if
∑T(ω)

n=1 ωn < 0.

We recall that O(β) denotes any quantity whose absolute value is bounded above by a constant
times β, for β sufficiently small.

Of course such a result is sufficient in order to check our sufficient condition (1.9) for
the occurrence of a re-entrant transition, for a given periodic charge sequence ω. On the
other hand, a full characterization of the critical curve in general requires some numerical
computations (but we stress once again that they are just finite dimensional computations).
As the example depicted in figure 2 shows, the inhomogeneous character of the charges may
induce a re-entrant transition for example if q = 1/3, a value for which the homogeneous
system shows no re-entrance, cf proposition 2.1 (but of course it can induce it also for q < 1/3).

An important feature resulting from proposition 3.1 (but also from figure 2) is the strong
dependence on ω. In particular, the sign of the mean over a period leads to drastically different
behaviours for large temperatures. It should be however pointed out that if ω1, . . . , ωT

are sampled in a IID fashion, like in the quenched disordered case, then in the limit of
T → ∞ the free energy of the periodic model converges P(dω)–a.s. towards the free energy
of the disordered model [12, Theorem 4.5]. One then directly sees that such a result implies
the convergence of the critical force of the model with period T to the critical force of the
corresponding disordered model. In figure 2, we have plotted a case in which

∑T

n=1 ωn = 0
and two cases deviating above and below the mean by more than one standard deviation.

4. The disordered case

Let us now have a look at the disordered model. For the sake of conciseness, we consider only
the case p < 1 and P(ω1 = +1) = P(ω1 = −1) = 1/2.

It is known that in this case the model with f = 0 and without hard-wall repulsion is
localized for every β > 0 (see [12, chapter 5]). The behaviour of the free energy is not fully
under control, but one can prove the following.

Proposition 4.1. For the disordered model, fc(β) → 0 for β → 0. As for large β, one has

fc(β)
β→∞= 1

2
+

1

β


1

2

∞∑
j=1

2−j log K(j) − log(p/2)


 + o

(
1

β

)
(4.1)
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so that re-entrance is observed as soon as

1

2

∞∑
j=1

2−j log K(j) > log(p/2), (4.2)

that is for q > 0.1994 . . . .

Proof of proposition 4.1. For β → 0, the annealed bound

F(β) � lim
N→∞

1

N
log EZ

β,0
N,ω (4.3)

is already sufficient to prove that fc(β) → 0. In fact, the right-hand side is just the free energy
of the homogeneous model where β is replaced by log(cosh β), and therefore (recall (2.4)
and discussion thereafter) it behaves like β4/(8p) for β small. This immediately implies that
fc(β) → 0 for β → 0.

Remark 4.2. In [1] it is actually proven that F(β)
β↘0∼ β4/(8p), so that fc(β)

β↘0∼ β/(2
√

p).

As for large β, we need the following.

Lemma 4.3. For every ε > 0 there exists βε such that for β � βε, we have∣∣∣∣∣∣F(β) − β

2
− 1

2

∞∑
j=1

2−j log K(j)

∣∣∣∣∣∣ � ε. (4.4)

Note that (4.1) is a direct consequence of lemma 4.3, and the proof of the latter can be
found in appendix A.1. Here, we just note that (4.4) shows how the situation is different from
the homogeneous case, where one has rather F(β) = β + log K(1) + o(1). In fact also in the
disordered situation the dominant configurations are those for which Sn = 0 for every n such
that ωn = +1 and Sn �= 0 otherwise. However, now the average density of +1 charges is 1/2
(whence the leading term β/2) and the distance between two successive positive charges is
random and can take any value j = 1, 2, . . . with geometric probability 2−j .

As explained in section 3, we expect the graph of fc(·) to be close to the intermediate
curve in figure 2.

4.1. The model with repulsion

Like in the homogeneous case, if we add the hard-wall repulsion then for β sufficiently small
F(β) = fc(β) = 0 (see, for instance, [12, proposition 5.1]). Moreover, a look at the proof of
(4.4) shows that lemma 4.3 still holds in this case, provided that K(n) is replaced by K+(n)

defined as K+(1) := K(1) and K+(n) := K(n)/2 for n � 2. This is just related to the
fact that, if n � 2, of all the possible trajectories {S0, . . . , Sn} of the (p, q) walk satisfying
S0 = Sn = 0, Si �= 0 for 1 � i < n, only half survive the introduction of the hard-wall
constraint. Therefore, (4.1) still holds with K(.) replaced by K+(.) and a sufficient condition
for having a re-entrant transition is

1

2

∞∑
j=1

2−j log K+(j) > log(p/2). (4.5)

Numerically, this corresponds to q > 0.2838 . . . .
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5. Generalizations

The procedure presented in this paper to study the phase diagram and the occurrence of a
re-entrant phase transition applies well beyond the case of the (p, q) walks. We have seen, in
fact, that all what one needs to know is the asymptotic behaviour of G(y) for small and large
y and the asymptotic behaviour of F(β) for small and large β.

Just to show an example of generalization, consider the case of a directed polymer in (2+1)

dimensions with homogeneous (ωn ≡ 1) pinning attraction to a defect line. In particular, we
will assume that Sn ≡ (S(1)

n , S(2)
n

) ∈ Z
2 and {Sn}n=0,1,... is the two-dimensional simple random

walk where Sn+1 is chosen uniformly among the four neighbours of Sn. In this section, it will
be understood that K(n) is the probability that the first return to zero of the two-dimensional
random walk occurs at time n (in the previous sections, the same symbol was used for the
analogous quantity referring to the (p, q) random walk).

Again, the Boltzmann weight is defined as in (1.1), with the only difference that the term
f SN is replaced by, say, f S

(1)
N . This corresponds to assuming that the force is pulling in the

direction ‘1’ (orthogonal to the defect line). Then, proposition 1.1 still holds, provided that in
the definition of G(y) one puts yS

(1)
N instead of ySN .

The analogue of proposition 2.1 is the following.

Proposition 5.1. For the homogeneous (2 + 1)-dimensional model one has fc(β) → 0 for
β → 0 and

fc(β)
β→∞= 1

2
+

1

β
log 2 + o

(
1

β

)
. (5.1)

Re-entrance does take place.

Proof of proposition 5.1. It is not difficult to prove that for the two-dimensional simple
random walk,

G(y) = log(cosh(y) + 1) − log 2. (5.2)

Indeed, first of all one has

E
[
exp
(
yS

(1)
N

); Sn �= 0 for n = 1, 2, . . . , N
]

� E
[
exp
(
yS

(1)
N

)] = E
[
exp
(
yS

(1)
1

)]N
= (1/2 + (1/2) cosh y)N (5.3)

for every N, so that

G(y) � log(cosh(y) + 1) − log 2. (5.4)

To get the complementary lower bound, note that

E
[
exp
(
yS

(1)
N

); Sn �= 0 for n = 1, . . . , N
]

� E
[
exp
(
yS

(1)
N

); S(1)
n �= 0 for n = 1, . . . , N

]
.

(5.5)

The quantity averaging on the right-hand side of (5.5) involves only
{
S(1)

n

}
n�0, which is just

a (p, q) walk with p = 1/2. Therefore, from the knowledge of G(y) for the (p, q) walk
(cf section 1.2), one obtains G(y) � log(1/2 + (1/2) cosh(y)) which concludes the proof
of (5.2).

Next, it is known [17] that K(2n) ∼ c/(n(log n)2) with c > 0 while K(2n + 1) = 0. As
a consequence (cf [12, Theorem 2.1]), F(β) vanishes for β → 0 faster than any power of β.
This, together with the expansion G(y) = y2/4+o(y2) for y → 0, implies that fc(β) → 0. As
for the large-β behaviour, in analogy with the discussion in section 2, a look at the dominant
trajectories gives F(β) = β/2 + (log K(2))/2 + o(1/β), where now K(2) = 1/4. Since
G(y) = y − 2 log 2 + o(1) for y → ∞, (5.1) follows from proposition 1.1. �
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The disordered (2 + 1)-dimensional model where ωn are IID symmetric random variables
ωn = ±1 can also be analysed in our framework, with the following result.

Proposition 5.2. For the disordered (2+1)-dimensional pinning model, fc(β) → 0 for β → 0
and

fc(β)
β→∞= 1

4
+

1

β


2 log 2 +

1

4

∑
j�1

2−2j log K(2j)


 + o

(
1

β

)
. (5.6)

Re-entrance is observed.

The proof of proposition 5.2 is essentially identical to that of proposition 4.1. The reason why
the factors 1/2 of (4.1) are replaced by 1/4 is just that our two-dimensional walk can touch
the defect line only for n even, and therefore for large β dominant trajectories will touch half
of the total positive charges, i.e. approximately N/4 of them. The occurrence of re-entrance
follows from a numerical evaluation of the constant multiplying 1/β in (5.6), which turns out
to be positive (and equal to 1.2427 . . .).
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A. Proofs and technical estimates

A.1. Proof of proposition 1.1 and lemma 4.3

Proof of proposition 1.1. Decompose the trajectory according to the location of the last visit
of S to the origin before N (including N), getting thus by the Markov property of S

Z
β,f

N,ω =
N∑

m=0

E

[
exp

(
β

m∑
n=1

ωn1Sn=0

)
; Sm = 0

]

× E[exp(βf SN−m); Sk �= 0, k = 1, . . . , N − m]. (A.1)

The right-hand side has the form
∑N

m=0 am(ω)bN−m, with a0(ω) = b0 = 1, am(ω) =
exp((F(β) + o(1))m) for m → ∞, P(dω)-a.s. (the presence of the indicator function of the
event Sm = 0 is irrelevant, see e.g. [12, remark 1.2], and bm = exp((G(βf ) + o(1))m),
again for m → ∞. At this point, we remark that Z

β,f

N,ω � max(aN(ω), bN) and

therefore lim infN→∞(1/N) log Z
β,f

N,ω is bounded below by max (F(β), G(βf )). For the
opposite inequality we note that for every ε > 0, there exists A(ω) such that an(ω) �
A(ω) exp((F(β) + ε)n) for every n. Analogously, bn(ω) � B exp((G(β) + ε)n) for some
constant B and every n. Therefore,

Z
β,f

N,ω � A(ω)B

N∑
m=0

exp(F(β)m + G(βf )(N − m) + εN), (A.2)

so that

Z
β,f

N,ω � (N + 1)A(ω)B exp(max(F(β), G(βf ))N + εN), (A.3)

for every N and, since ε > 0 can be chosen arbitrarily small, the proof is complete. �
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Proof of lemma 4.3. We set

Q := 1

2

∞∑
j=1

2−j log K(j), (A.4)

and we separate the proof in lower and upper bounds.
For the lower bound, we select the S trajectories hitting 0 if and only if the charge is +1

on that site. This yields

Z
β,0
N,ω �


NN (ω)∏

j=1

exp(β)K(	j )


K


N −

NN (ω)∑
j=1

	j


 , (A.5)

where 	1 := inf{n > 0 : ωn = 1}, 	k+1 := inf
{
n > 0 : ωn+

∑k
j=1 	j

= 1
}

and NN(ω) :=
max

{
k :
∑k

j=1 	j � N
}
. Note that {	j }j is an IID sequence of geometric random variables

of parameter 1/2. By taking the logarithm and dividing by N both sides in (A.5), in the limit
as N → ∞ we get

F(β) � β lim sup
N→∞

1

N
NN(ω) + lim sup

N→∞

1

N

NN (ω)∑
j=1

log K(	j ), (A.6)

where we have used the fact that K
(
N −∑NN (ω)

j=1 	j

)
� K(N) and (log K(N))/N → 0 as

N → ∞. By the classical renewal theorem NN(ω)/N actually converges P(dω)-a.s. to
1/E[	1] = 1/2 and, in turn, by the strong law of large numbers also the second superior limit
on the right-hand side of (A.6) is an almost sure limit and it is equal to E[log K(	1)]/E[	1],
which coincides with Q. This concludes the proof of the lower bound.

For the upper bound, we define AN,ω := {n : ωn = +1} ∩ [1, N ] and for every ε > 0 and
any realization of ω, we define the set of trajectories

�N,ω,ε := {S : |{1 � n � N : Sn = 0} � AN,ω| � ε|AN,ω|}, (A.7)

where � denotes the symmetric difference of sets. Of course, by the law of large numbers

|AN,ω|/N N→∞−→ 1/2, P(dω)-a.s. Therefore for the partition function restricted to �N,ω,ε, we
have

Z
β,0
N,ω

(
��

N,ω,ε

)
� exp(β|AN,ω|(1 − ε))

N�N0(ω)

� exp

(
N

β

2

(
1 − ε

2

))
, (A.8)

for some N0(ω) which is P(dω)-a.s. finite. We can therefore focus on Z
β,0
N,ω(�N,ω,ε), which is

bounded above by exp(β|AN,ω|)P(�N,ω,ε), and it is thus sufficient to show that

lim sup
ε↘0

lim sup
N→∞

1

N
log P(�N,ω,ε) � Q, (A.9)

to conclude.
In order to establish (A.9), we introduce a coarse graining length L ∈ N (L is sent to ∞ in

the end, that is, after N → ∞ and ε↘0, so that, in particular, εL can be chosen arbitrarily small
and we assume below that εL 	 1). We assume that N/L ∈ N and we break {1, . . . , N} into
N/L non-overlapping blocks {Bj }j=1,...,N/L of length L. For every realization of the disorder
ω, we decompose the event �N,ω,ε into the disjoint union of the events �N,ω,ε,v, v ∈ {0, 1}N/L,
defined by the property that if S ∈ �N,ω,ε,v then Bj ∩ {n : Sn = 0} = Bj ∩ AN,ω if and only
if vj = 0. In short, there is a mismatch in the block Bj with respect to the energetically
optimal contact configuration if and only if vj = 1 (the mismatch can be on a single site or on
several sites). Note that there cannot be more than εN blocks containing a mismatch, that is,
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if |v| := |{i : vi = 1}| > εN the event �N,ω,ε,v is empty. Since εL 	 1, only a small fraction
of the blocks contains mismatches. We therefore have

P(�N,ω,ε) =
∑

|v|�εN

P(�N,ω,ε,v) � exp(c(εL)N/L) max
|v|�εN

P(�N,ω,ε,v), (A.10)

where c(x)
x↘0−→ 0 comes from estimating the cardinality of {v : |v| � εN}.

We are left with estimating P(�N,ω,ε,v) uniformly in v. For this we introduce the random
variable κj = inf{n ∈ Bj : ωn = 1} (κj = ∞ if ωn = 0 for every n ∈ Bj ) and for every j

such that κj < ∞ the event

E
j

L,ω := {S : Bj ∩ {n : Sn = 0} ∩ [κj ,N] = AN,ω ∩ Bj ∩ [κj ,N]}, (A.11)

that is simply the event that there is no mismatch in Bj from step κj onward. If κj = ∞ then
E

j

L,ω is just the set of all possible polymer trajectories, without any restriction. Finally, we
define

Yj (ω) :=
{

P
(
E

j

L,ω

∣∣Sκj
= 0
)

if κj < ∞
1 otherwise,

(A.12)

where, if A and B are two events, P(A|B) denotes as usual the probability of A conditioned to
B. Note that {Yj }j is a sequence of IID random variables and that, by the renewal theorem (very
much like in the proof of the lower bound: we are essentially evaluating the same quantity),

(1/L) log Y1(ω)
L→∞−→ Q, P(dω)-a.s. Therefore, for every δ ∈ (0, 1) we can find L0 such that

for L � L0,

P (Y1(ω) � exp((Q + δ)L)) � 1 − δ

2
. (A.13)

Now note that

P(�N,ω,ε,v) � P
( ∩j :vj =0 E

j

L,ω

)
, (A.14)

and if we set k := |{i : vi = 0}| and {i : vi = 0} = {i1, . . . , ik} ({il}l=1,...,k increasing) we
have that if κik < ∞
P
(∩j :vj =0 E

j

L,ω

) = P
(∩k−1

l=1 E
il
L,ω ∩ {Sκik

= 0
} ∩ E

ik
L,ω

)
� P

(∩k−1
l=1 E

il
L,ω

)
Yik (ω), (A.15)

where we have used the Markov property of S and in the last step we have neglected the event{
Sκik

= 0
}
. With our definition of Yj (ω), the factorization inequality in (A.15) actually holds

also for κik = ∞, so that by iterating we obtain

P
(∩j :vj =0 E

j

L,ω

)
�
∏

j :vj =0

Yj (ω). (A.16)

By putting equations (A.13) to (A.16) together, by applying the strong law of large numbers
and by exploiting the fact that more than a fraction (1 − εL) of the N/L blocks is free of
mismatches, we obtain that

P(�N,ω,ε,v) � exp

(
(1 − δ)(Q + δ)L(1 − 2εL)

N

L

)
, (A.17)

for N � N0(ω), with N0(ω) a random value that is P(dω)-a.s. finite.
Overall we have therefore established that P(dω)-a.s.

lim sup
N→∞

1

N
log P(�N,ω,ε) � c(εL)

L
+ (1 − δ)(Q + δ)(1 − 2εL)

ε↘0−→ (1 − δ)(Q + δ). (A.18)

Since δ can be chosen arbitrarily small, the proof of the upper bound is complete. �
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A.2. Estimates in the periodic case

We prove here theorem 3.1. The first result, that is the small temperature expansion in
(3.1), just comes from evaluating the ground state energy. We omit the details since they
are substantially easier than those needed for the analogous result in the disordered set-up
(cf lemma 4.3 and appendix A.1). We also point out that such a result follows directly from
the semi-explicit solution available for periodic models [4, 5] that we now outline since we
exploit it in order to establish the high temperature expansion (3.2).

The free energy of periodic models can be expressed by first introducing the (Abelian)
group S := Z/ (T(ω)Z), that is {1, . . . , T(ω)} with periodic boundaries. With abuse of notation
an element α of S is going to be identified with a point in {1, . . . , T(ω)}, so by n ∈ α we mean
n = kT(ω) + α for some k ∈ Z. For b � 0, we set

Kα(b) :=
∑
n∈α

K(n) exp(−bn), (A.19)

and in turn for α and γ ∈ S

Aγ,α(b, β) := Kα−γ (b) exp(βωα). (A.20)

By the Perron–Frobenius theory on matrices with positive entries, the T(ω) × T(ω)–matrix
A(b, β) has a maximal positive eigenvalue, often called the spectral radius of A(b, β), that
we denote by λω(b, β). By standard arguments, one shows that λω(·, β) is decreasing and
smooth. In [4, 5] it is shown that the (ω-dependent) free energy is 0 if λω(0, β) � 1. If instead
λω(0, β) > 1 then there exists a unique solution b > 0 to the equation λω(b, β) = 1, and such
a b is precisely the free energy F(β).

Let us now expand A(b, β) for small values of b and β:

Aγ,α(b, β) = Aγ,α(0, 0)

(
1 + βωα +

1

2
β2 + o(β2)

)
−

√
2p

T(ω)
(b1/2 + o(b1/2)), (A.21)

where the last term follows from the Riemann sum approximation procedure,∑
n∈α

(1 − exp(−bn))K(n) = b1/2(
√

p/(2π) + o(1))b
∑
n∈α

(1 − exp(−bn))

(bn)3/2

= 1

T(ω)
b1/2(

√
p/(2π) + o(1))

∫ ∞

0

(1 − exp(−z))

z3/2
dz, (A.22)

and by the fact that the integral in the last term is equal to 2
√

π . We now use the fact that the
maximal eigenvalue λ(A+ εB),A as matrix with positive terms and ε small, can be written up
to O(ε2) terms as λ(A) + εu · Bv, with u and v respectively as the right and left eigenvectors
of A with the eigenvalue λ(A), normalized by setting

∑
α vα = 1 and

∑
α uαvα = 1. In our

case A = A(0, 0) turns out to be bi-stochastic, so λ(A), before denoted as λω(0, 0), is equal
to 1 and vα = 1/T(ω), as well as uα = 1 for every α. This leads to the expansion

λ(b, β) = 1 + β

(
1

T(ω)

T(ω)∑
n=1

ωn

)
+

1

2
β2 −

√
2pb1/2 + r(b, β), (A.23)

where r(b, β) = O(β2) + o(
√

b) if
∑T(ω)

n=1 ωn �= 0 and r(b, β) = o(β2) + o(
√

b) otherwise.
Therefore, the existence of a (unique) solution b = F(β) to λω(b, β) = 1 for β small requires∑T(ω)

n=1 ωn � 0 and

F(β) =



β2

2p
1

T(ω)

∑T(ω)
n=1 ωn + o(β2) if

∑T(ω)
n=1 ωn > 0,

β4

8p
+ o(β4) if

∑T(ω)
n=1 ωn = 0.

(A.24)
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Armed with these asymptotic behaviours, (3.2) follows from G−1(y) = √
2y(1 + o(1))/p

(y↘0).
What happens when

∑T(ω)
n=1 ωn < 0 is that λω(0, β) is smaller than 1 for small β (see

(A.23)). If we set β0 := sup{β : λω(0, β) < 0} (note that β < ∞ unless ωn = −1 for every
n, as one can see from the large β expansion), then one readily sees that fc(β) > 0 for β > β0

and fc(β) = 0 otherwise.
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